Uncertainty Margins for SP-8072 Lift Off Acoustic Loads Estimation

Robert Lawson, Quartus Engineering Inc. Paul Bremner, AeroHydroPLUS

June 4–6, 2019

© The Aerospace Corporation 2017

- **Motivation**
- SP-8072 Lift-off Acoustics Model
- Uncertainty Analysis
- Comparison with ASMAT, SMAT results

Motivation

- All launch vehicles need to define liftoff acoustic (LoA) loads
- Smaller / newer LV programs cannot afford model scale testing
- NASA ASMAT & SMAT tests provide valuable model validation data
- Model can be used to determine which tests will burn down uncertainty margins

- Motivation
- **SP-8072 Lift-off Acoustics Model**
- Uncertainty Analysis
- Comparison with ASMAT, SMAT results

SP-8072 Model

业

Engine Parameters & Overall Sound Power

- Overall sound power calculated using five methods
	- *Eldred, Gierke, McDonnel Douglas, and Potter & Crocker (small-medium engines only)*
	- *Sutherland & Plotkin method implemented, but requires data which many not be available*
- Data can be augmented or replaced with hot fire test data once available
- Different estimates can be used for uncertainty analysis
	- *Mean sound power is used*
	- *Standard deviation used in uncertainty analysis*

Source-Power Distribution and Propagation

- Power is distributed along plume length according to NRSP model
- Several different models / assumptions available for cluster of multiple engines
	- *Correlation to test data may lead to weighting one model more than another*
	- *These models could be augmented or replaced with hot fire test data*

\EROSPACE

Directivity Index

- Several different sets of directivity index have been published
	- *Eldred, Sutherland / Plotkin, and MSFC Thiokol RSRM*
	- *Data can be augmented or replaced with hot fire test data*
	- *Different DI methods can be used in uncertainty analysis*

Figure 10. - Directivity of far-field noise for standard chemical rockets for several values of Strouhal number.

Use MEAN and STD DEV over these differing estimates (not Maxi-max)

MSFC / Thiokol RSRM data from: "Modifications to the NASA SP-8072 Distributed Source Method II for Ares I Lift-off Environment Predictions", Kenny, Haynes, 2009

Water Attenuation

- Water attenuation scales with ratio of water mass / propellant mass (Ww/Wp)
- For apparent sources below deck and attenuated by water, a frequency dependent attenuation is applied
	- *These values are empirical "fit to SPL data" estimates only*
- Above deck "Rainbird" water attenuation estimates are based on SMAT and ASMAT test data published by MSFC
	- *These two data sets provide an excellent ensemble for calculating a mean and standard deviation for use in uncertainty analysis*

Calculated SPL on Vehicle – Mean Result

- Calculate overall SPL level
- Sample results are **MEAN overlays only**

Data from:

"Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test", Counter, Houston, 2012 NASA Document 20130000589

Data from:

"Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results", Counter, Houston, 2011 NASA Document 20120001741

- Motivation
- SP-8072 Lift-off Acoustics Model
- **Uncertainty Analysis**
- Comparison with ASMAT, SMAT results

Uncertainty model

End-to-end math model of SP-8072

$$
L_{p}(z,h,f) = 10Log \left\{ \overline{p}_{Direct}^{2} + \overline{p}_{Reflect}^{2} + \overline{p}_{Splash}^{2} + \overline{p}_{PreDuct}^{2} + \overline{p}_{Duct}^{2} \right\}
$$

=
$$
10Log \left\{ \left(\frac{A_{i}\overline{D_{i}}\overline{S_{i}}\overline{\Pi}_{M}}{4\pi\overline{r_{i}}^{2}} \right)_{Direct} + \left(\frac{A_{j}\overline{D_{j}}\overline{S_{j}}\overline{\Pi}_{M}}{2\pi\overline{r_{j}}^{2}} \right)_{Reflect} + \left(\frac{A_{s}\overline{S_{s}}\overline{\Pi}_{M}}{2\pi\overline{r_{s}}^{2}} \right)_{Splash} + \left(\frac{A_{k}\overline{D_{k}}\overline{S_{k}}\overline{\Pi}_{M}}{2\pi\overline{r_{k}}^{2}} \right)_{PreDuct} + \left(\frac{A_{l}\overline{D_{l}}\overline{S_{l}}\overline{\Pi}_{M}}{2\pi\overline{r_{l}}^{2}} \right)_{Direct} \right\}
$$

Uncertainty model

MPE from Normal Tolerance Limit

$$
P95\left[L_p\right] = \left\langle L_p\right\rangle + 1.64 \sigma_{L_p}
$$

$$
P05\left[L_p\right] = \left\langle L_p\right\rangle - 1.64 \sigma_{L_p}
$$

$$
L_{P} = 10Log \left\{ \overline{p}_{Direct}^{2} + \overline{p}_{Reflect}^{2} + \overline{p}_{PreDuct}^{2} + \overline{p}_{Splash}^{2} + \overline{p}_{Duct}^{2} \right\} \, dB
$$

Statistics of Log of Sum of Random Variables

$$
\langle L_{\Sigma p^2} \rangle \neq 10Log \{\langle \Sigma p^2 \rangle\}
$$

= 10Log \{\langle \Sigma p^2 \rangle\} - 5Log \{1 + r^2 [\Sigma p^2]\}

$$
\sigma^2 [L_{\Sigma p^2}] = 43.4Log \{1 + r^2 [\Sigma p^2]\}
$$

Relative Variance is defined

$$
r^2 [\Sigma p^2] = \sigma_{\Sigma p^2}^2 / \langle \Sigma p^2 \rangle
$$

where Relative Variance is defined

$$
r^2\left[\Sigma p^2\right]=\sigma_{\Sigma p^2}^2\left/\left\langle\Sigma p^2\right\rangle\right.
$$

robert.lawson@quartus.com 13 pbremner@aerohydroplus.com

Uncertainty model

Relative Variance from Component Variances

Variance of total Lp from variance of each plume Segment SPL contribution

$$
\left\langle \Sigma p^2 \right\rangle = \left\langle p_{Direct}^2 \right\rangle + \left\langle p_{Reflect}^2 \right\rangle + \left\langle p_{PreDuct}^2 \right\rangle + \left\langle p_{Splash}^2 \right\rangle + \left\langle p_{Duct}^2 \right\rangle
$$

$$
\sigma^2 \left[\Sigma p^2 \right] = \sigma^2 \left[p_{Direct}^2 \right] + \sigma^2 \left[p_{Reflect}^2 \right] + \sigma^2 \left[p_{Splash}^2 \right] + \sigma^2 \left[p_{PreDuct}^2 \right] + \sigma^2 \left[p_{Duct}^2 \right]
$$

31

Diver and the set of each plume Segment SPL controlled the set of each plume Segment SPL controlled the set of P_{D}^2
 $\left[p_{\text{D}}^2 p_{\text{D}}^2 \right] + \left\langle p_{\text{P}}^2 p_{\text{E}}^2 \right\rangle + \left\langle p_{\text{P}}^2 p_{\text{E}}^2 \right\rangle + \left\langle p_{\text{P}}$ **Direct Propertion**
 Direct Properties
 Direct Preduct Splash Dume Segment SF
 $\frac{1}{2} \frac{1}{2} \frac{1}{2} \left(P_{\text{hyperBuct}}^2 \right) + \left\langle P_{\text{PerDuct}}^2 \right\rangle + \left\langle P_{\text{PerDuct}}^2 \right\rangle + \left\langle P_{\text{DerDuct}}^2 \right\rangle + \left\langle P_{\text{DerDuct}}^2 \right\rangle + \sigma^2 \left[P_{\text{PerDuct}}^2$ Segment SPL variance from Component Sound Power & Radiation variances $\sqrt{11}$ $\sqrt{4}$ $\sqrt{6}$ \sqrt{D} $\sqrt{2}$ $\langle P_{\xi}^{2} \rangle = \langle \Pi_{m} \rangle \langle A_{\xi}^{water} \rangle \langle S_{\xi} \rangle \langle D_{\xi} \rangle / \langle 4 \pi R_{\xi}^{2} \rangle$
 $P_{\xi}^{2} \supseteq r^{2} \Big[\Pi_{m} \Big] + r^{2} \Big[A_{\xi}^{water} \Big] + r^{2} \Big[S_{\xi} \Big] + r^{2} \Big[D_{\xi} \Big] + r^{2} \Big[R_{\xi}^{2} \Big]$
 $\sigma_{\mu}^{2} = \sigma_{\Pi}^{2} = \sigma_{A_{\xi}}^{2} = \sigma_{S_{\xi}}^{2} = \sigma$ **10del**

2 2 from Component Variances

2 $\langle \cdot \rangle = \langle p_{\text{Direct}}^2 \rangle + \langle p_{\text{Reference}}^2 \rangle + \langle p_{\text{FreDuer}}^2 \rangle + \langle p_{\text{System}}^2 \rangle + \langle p_{\text{Duz}}^2 \rangle$
 $= \sigma^2 \left[p_{\text{Direct}}^2 \right] + \sigma^2 \left[p_{\text{Reference}}^2 \right] + \sigma^2 \left[p_{\text{Pyllash}}^2 \right] + \sigma^2 \left[p_{\text{Piz}}^2 \right]$
 $= \sigma^2 \left[$ $\begin{aligned} &+r^2\left[A_{\xi}^{water}\right]+r^2\left[S_{\xi}\right]+r^2\left[D_{\xi}\right]+r^2\left[R_{\xi}^2\right] \ &=&\sigma_{S_{\xi}}^2-\sigma_{D_{\xi}}^2-\sigma_{R_{\xi}}^2 \end{aligned}$ $r \mid \frac{2}{\sqrt{2}}$ $\lceil \frac{1}{\sqrt{2}} \rceil$ $\left[\sum_{\xi}^2 \right] \approx r^2 \left[\prod_m \right] + r^2 \left[A_{\xi}^{\text{water}} \right] + r^2 \left[S_{\xi} \right] + r^2 \left[D_{\xi} \right] + r^2 \left[R_{\xi}^2 \right]$ $R_{\rm g}^2$ D_{ε} $\langle R_{\varepsilon}^2 \rangle$ **MOdel**

total Lp from Component Variances

total Lp from variance of each plume Segment SPL contribution
 $p^2 = (p_{new}^2) + (p_{input}^2) + (p_{num}^2) + (p_{num}^2) + (p_{num}^2)$
 $p^2 = \sigma^2 [p_{linear}^2] + \sigma^2 [p_{Rofect}] + \sigma^2 [p_{Rofect}] + \sigma^2 [p_{normal}^2] + \sigma^2 [p_{$ ی کی این کار دیگر کا **10del**

De from Component Variances

Stal Lp from variance of each plume Segment SPL contribution
 $\chi^2 = \langle p_{\text{Dwe}}^2 \rangle + \langle p_{\text{Rulow}}^2 \rangle + \langle p_{\text{Pvdow}}^2 \rangle + \langle p_{$ $\xi \qquad \lambda^{-1} m / \qquad \lambda^{1} \xi / \qquad \lambda^{0} \xi / \qquad \lambda^{0} \xi / \qquad \lambda^{1} \xi /$ $\langle \langle P_{\xi}^2 \rangle = \langle \Pi_m \rangle \langle A_{\xi}^{water} \rangle \langle S_{\xi} \rangle \langle D_{\xi} \rangle / \langle 4 \pi R_{\xi}^2 \rangle$ $\sigma_{\rm n}^2$ $\sigma_{\rm A_s}$ $\sigma_{\rm S_s}$ $\sigma_{\rm D_s}$ $\sigma_{\rm R_s^2}$ $\left(\Pi_{m}\right) \setminus \left\langle A_{\varepsilon}\right\rangle \setminus \left\langle S_{\varepsilon}\right\rangle \setminus \left\langle D_{\varepsilon}\right\rangle \setminus \left\langle R_{\varepsilon}^{2}\right\rangle$

robert.lawson@quartus.com 14 pbremner@aerohydroplus.com

- Motivation
- SP-8072 Lift-off Acoustics Model
- Uncertainty Analysis
- **Comparison with ASMAT, SMAT results**

Comparison with ASMAT, SMAT

Data from:

Testing reduces uncertainty margins

"Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test", Counter, Houston, 2012 NASA Document 20130000589

SUMMARY

- Inputs to SP-8072 are frequently uncertain which can lead to large uncertainty margins
- **Quantitative uncertainty analysis:**
	- *Robust statistical basis for MPE (eg. P95/50)*
	- *Identifies dominant sources of uncertainty*
	- *Justifies testing to burn down margins*
- **Hotfire testing** to measure overall sound power and directivity can reduce two uncertainties in the model
	- *Test may also be devised to extract source distribution*

Questions ?

