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Motivation

• All launch vehicles need to define lift-

off acoustic (LoA) loads

• Smaller / newer LV programs cannot 

afford model scale testing

• NASA ASMAT & SMAT tests provide 

valuable model validation data

• Model can be used to determine which 

tests will burn down uncertainty margins
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SP-8072 Model
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• NASA SP-8072 provides a basic 

methodology to develop Liftoff Acoustic 

Loads by subdividing plume into increments 

of apparent acoustic sources

• Example SP-8072 model used here to 

illustrate uncertainty margin implementation

• Model includes additional effects:

– Reflections from Launchpad

– Water attenuation 

– Deck / bridge attenuation

– Splash / drift effect

Plume Sound Power  ΠM(f)

Direct Reflect Splash Pre-duct Duct

SPL @ station Lp(z,h,f)

Spectrum Sk(xk/xt)

Directivity Dk(xk,θk)

Barrier, Water

Attenuation Ak(xk)

Propagation Qk/2πrk
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Engine Parameters & Overall Sound Power

• Overall sound power calculated using five methods

– Eldred, Gierke, McDonnel Douglas, and Potter & Crocker (small-medium engines only)

– Sutherland & Plotkin method implemented, but requires data which many not be available

• Data can be augmented or replaced with hot fire test data once available

• Different estimates can be used for uncertainty analysis

– Mean sound power is used

– Standard deviation used in uncertainty analysis

Use the MEAN

and STD DEV

(not Maxi-max)

Mean = 202.9
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Source-Power Distribution and Propagation 

• Power is distributed along plume length according to NRSP model

• Several different models / assumptions available for cluster of multiple engines

– Correlation to test data may lead to weighting one model more than another

– These models could be augmented or replaced with hot fire test data

Use the MEAN

and STD DEV

(not Maxi-max)
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Directivity Index

• Several different sets of directivity index have been published

– Eldred, Sutherland / Plotkin, and MSFC Thiokol RSRM

– Data can be augmented or replaced with hot fire test data

– Different DI methods can be used in uncertainty analysis

MSFC / Thiokol RSRM data from:

“Modifications to the NASA SP-8072 Distributed Source 

Method II for Ares I Lift-off Environment Predictions”, 

Kenny, Haynes, 2009

NASA Document 20090023640Original Eldred Directivity Index from SP-8072 Plotkin and Sutherland Directivity Index

Use MEAN and STD DEV 

over these differing estimates

(not Maxi-max)



9robert.lawson@quartus.com

pbremner@aerohydroplus.com

Water Attenuation

• Water attenuation scales with ratio of water mass / propellant mass (Ww/Wp)

• For apparent sources below deck and attenuated by water, a frequency 

dependent attenuation is applied

– These values are empirical “fit to SPL data” estimates only

• Above deck “Rainbird” water attenuation estimates are based on SMAT and 

ASMAT test data published by MSFC

– These two data sets provide an excellent ensemble for calculating a mean and standard 

deviation for use in uncertainty analysis

Use the MEAN

and STD DEV

(not Maxi-max)
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Calculated SPL on Vehicle – Mean Result

• Calculate overall SPL level

• Sample results are MEAN overlays only

ARES I-X & ASMAT Zone 10

Data from:

“Ares I Scale Model Acoustic Test Above Deck Water 

Sound Suppression Results”, Counter, Houston, 2011

NASA Document 20120001741

Data from:

“Verification of Ares I Liftoff Acoustic Environments via the 

Ares I Scale Model Acoustic Test”, Counter, Houston, 2012

NASA Document 20130000589
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Uncertainty model
End-to-end math model of SP-8072
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Relative Variance from Component Variances

Variance of total Lp from variance of each plume Segment SPL contribution

Segment SPL variance from Component Sound Power & Radiation variances
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Comparison with ASMAT, SMAT
Testing reduces uncertainty margins 

ARES I-X & ASMAT Zone 10 ARES I-X & ASMAT Zone 10

Improvement after Hotfire testing

Data from:

“Verification of Ares I Liftoff Acoustic Environments via the 

Ares I Scale Model Acoustic Test”, Counter, Houston, 2012

NASA Document 20130000589

MPE before Hotfire testing
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SUMMARY

• Inputs to SP-8072 are frequently uncertain which can lead to large 

uncertainty margins

• Quantitative uncertainty analysis:

– Robust statistical basis for MPE (eg. P95/50)

– Identifies dominant sources of uncertainty

– Justifies testing to burn down margins

• Hotfire testing to measure overall sound power and directivity can 

reduce two uncertainties in the model

– Test may also be devised to extract source distribution
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