Orion MPCV Nonlinear Dynamics Uncertainty

Adam Johnson¹, Paul Bremner³ Matt Griebel¹, Brent Erickson¹, Joel Sills²

> ¹Quartus Engineering Incorporated ²NASA Engineering and Safety Center ³AeroHydroPLUS

> > Approved for Public Release

Background

- Vibration testing of the Orion Multi-Purpose Crew Vehicle (MPCV) Configuration 4 (C4) Structural Test Article (STA) was performed in the reverberant acoustic chamber at Lockheed Martin
 - C4 = "full stack" launch configuration
 - Fixed base with varying stinger shakers
- Significant nonlinear behavior and response deviation from pre-test FEA predictions
 - Frequency and damping variations
 - Nonlinear FRF shapes
- MPCV Nonlinearities determined to be stick-slip in nature, sourced to multiple key joints
 - See "SCLV-2019_Quartus_E-STA_NL_Correlation.pptx"

and "SCLV_2021_MPCV_Nonlinear_Correlation_and_QSMA.pptx

Nonlinear Correlation Motivation

- Performed nonlinear model correlation to...
 - Further elucidate the source and type of nonlinearities present in MPCV joints
 - Capture MPCV nonlinear dynamics in a single model
 - Develop a method to quantify uncertainty introduced when linearizing a nonlinear system
- Coupled Loads Analysis (CLA) typically performed using a linear model
 - A) typically performed using a linear model
 - Current technique for nonlinear MPCV is to develop 2 separate linearizations:
 - FEM correlated to a High Level Loading (HLL)
 - FEM correlated to a Low Level Loading (LLL)

Note: Even at corresponding load levels, linear response cannot capture variations in response magnitude due to slipping joints

Focus of this

presentation

C4 Nonlinear Correlation Example

- Example FRF comparison below illustrates C4 nonlinear model correlation
 - Single model captures response to LLL loading as well as transition to HLL loading
 - Linear correlation cannot capture FRF shape

SCLV Dynamic Environments Workshop, June 2021

Comparative CLA Study

Performed a comparative CLA study to quantify Linearization Uncertainty

- Developed flight-like NL "Truth" model from C4 correlation and LM flight FEM
- CLA transient loads applied to all three models as base shake (MSA-SA interface)

SCLV Dynamic Environments Workshop, June 2021

Response Locations

- Recovering grid response at 343 evenly distributed response locations
 - Best immediately available response sample at the time
- Known limitations of response sample
 - Includes secondary structure that may not be of interest to stakeholders
 - Does not include assessment of forces, stresses or strains

Response Metric Selection

- Determined that velocity grid response is best proxy for structural loads and strains •
 - Acceleration contains large amount of localized high-frequency vibration
 - **Displacement under-represents vibration from second and third bending modes** ____

MSA-SA IF Output from NL Model (Transonic)

CLA Response Comparison Checks

- How well are the linearizations approximating nonlinear flight transient response?
- Summarized comparison for each load case using Pearson correlation coefficients
 - 1 => perfect match between transients
 - 0 => transients have no linear relationship
 - <u>Does not compare response</u> <u>magnitudes</u>

$$\rho(A,B) = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{A_i - \mu_A}{\sigma_A} \right) \left(\frac{B_i - \mu_B}{\sigma_B} \right) \quad -$$

Time (sec)

CLA Response Comparison Checks

- HLL linearization is a reasonable approximation for high-level flight loading
 - Liftoff and Transonic
- Need to compare response <u>magnitudes</u> (see next slide)

Response Magnitude Uncertainty Parameter

- Linearization Uncertainty Factor (LUF) calculated at each response location for each load case:
 - 1. Combine XYZ by computing root sum squared (RSS) time history
 - 2. Find Peak Value (PV) of NL and linear FEM RSS time history
 - 3. LUF is NL PV normalized by linear FEM PV
- LUFs can be combined into probability distributions over all locations and a set of load cases (see next slide...)

Time (sec)

Linearization Uncertainty Factor (LUF)

$$LUF_n = \frac{PV_{NL}}{PV_L}$$

 $\label{eq:LUF} \begin{array}{l} \text{LUF>1} \rightarrow \text{Linear Model is Under-Predicting} \\ \text{LUF<1} \rightarrow \text{Linear Model is Over-Predicting} \end{array}$

Trends in LUF Probability Distributions

- Mean LUF <1 driven by conservative 1% damping in the linear model
- Highest 1% of LUFs driven by localized nonlinear transient "spikes"
 - Would likely be less pronounced in strains or integrated structural loads

Maximum Expected UFs

- Probability distributions shown for all load cases below
- Used Empirical Tolerance Limits (ETL) to estimate P95/50 and P99/90 LUF within each load class (NASA HBK 7005)
 - Probability level (β): determined directly from Cumulative Distribution Functions (CDF)
 - <u>Confidence level (γ): computed from binomial confidence interval</u>

CDFs and Associated 90% Confidence Bounds

UF Summary – Velocities

- LUF statistics shown below for HLL linear CLA model
- Applying P95 or P99 LUFs as a multiplicative factor existing estimate of P95/50 responses would be highly conservative
 - Need to account for response reduction from mean LUF <1.0
 - Linearization uncertainty is an *independent* source of uncertainty (with respect to loads uncertainty, model uncertainty, etc...)

IM HILFFM

- LUF <u>mean</u> and <u>standard deviation</u> should be correctly statistically combined with other sources of uncertainty to obtain the correct RSS-d uncertainty factor for P95/50 loads
 - Details on the following slide...

Model Damping:	1%				
Statistic:	Mean	Standard Deviation	P95/50	P99/90	
Liftoff	0.98	0.10	1.1	1.2	
Transonic	0.92	0.29	1.1	2.1	
Max Accel	0.87	0.30	1.5	2.1	
Combined	0.92	0.26	1.2	1.7	
		C			

P95 and P99 LUF should <u>not</u> be directly applied to existing estimate of P95/50 responses (see next 2 slides)

Total CLA Uncertainty [1 of 2]

- CLA response (stress, loads, etc...) is a product of at least 3 Random Variables
 - Loads (F), Linear Elastic Transfer Functions (E_L), Linearization Uncertainty Factor (R_{LUF})
- Combined CLA response distribution will converge to a log-normal distribution
 - Sum of statistically independent sources of uncertainty (central limit theorem)

Total CLA Uncertainty [2 of 2]

- Statistically combining LUFs with CLA response distribution results in modest increase from linear CLA P95/50 estimate
 - Incorporates mean LUF < 1.0 (slight reduction)</p>
 - Linearization uncertainty RSS-d with other sources of CLA uncertainty
- Applying P95/50 LUF as scale factor to existing linear CLA P95/50 estimates exceeds true P95/50 (overly conservative)

SCLV Dynamic Environments Workshop, June 2021

Considerations for Future Work

- Future work should analyze targeted set of CLA outputs of interest
 - Likely strains or integrated loads
 - This analysis used grid point velocities over entire vehicle as a proxy
- Shock Response Spectrum could offer a more rigorous approach
 - This analysis used time history peak value which give less insight into the dynamic sources of uncertainty

