Orion MPCV E-STA Nonlinear Dynamics Uncertainty Factors for NESC

Adam Johnson¹, Matt Griebel¹, Brent Erickson¹, Andrew Doan¹, Chris Flanigan¹, Jesse Wilson¹, Paul Bremner², Joel Sills³, Erica Bruno⁴

> ¹Quartus Engineering Incorporated ²AeroHydroPLUS ³NASA Engineering and Safety Center ⁴Analytical Mechanics Associates, Inc.

IMAC-XXXVIII Conference & Exposition, February 10-13, 2020

- 1

Background

- Vibration testing performed on European Service Module (ESM) Structural Test Article (E-STA)
 - Verify structural integrity of flight-like specimen of ESM near flight load levels
- Large nonlinear behaviors observed in primary dynamic responses
- Quartus performed independent E-STA model correlation (linear & nonlinear) for the NASA Engineering & Safety Center (NESC)
 - 1) Linear model correlation (see Appendix I)
 - 2) Nonlinear model generation & correlation (see Appendix I)
 - 3) CLA response study and uncertainty assessment

E-STA Model Overview

Linear Correlation Summary

- Previous effort by Quartus for NESC (presented at SCLV 2018) resulted in 2 correlated linear FEMs
 - Low load level (LLL) 20%
 - High load level (HLL) 100%
- Differences between FEMs reduced to properties at 3 joints (largest sources of nonlinearity)
 - Airfoils (SAJ to CMA), PSM, and ESM spherical bearings

|--|

ESM SB Springs

Location	DOE	LLL Stiffness	
LOCATION	DOP	Increase over HLL	
Airfoil	1-3	1500	
PSM	4	100	
Spherical Bearings	1	1.5	

Linear Correlation Results – Acceleration

- Representative location shown (CM-LAS)
 - Many more locations were examined/compared during the correlation process

Nonlinear Correlation Motivation

- Further elucidate the source and type of nonlinearity
- Capture MPCV nonlinear dynamics in a single model
- Inform the use of linear FEM in CLA
 - Can linearized models accurately predict MPCV flight responses?
 - What linear FEM should be used with each CLA load type (i.e. liftoff, transonic, etc...)?
 - Uncertainty introduced from using linearization of nonlinear system
 - Linear FEMs represent linearization about two different load levels (HLL & LLL)

Linearization Uncertainty Illustration

Nonlinear FEM Correlation Results – Acceleration

- Representative location shown (CM-LAS)
 - Many more locations were examined/compared during the correlation process

Uncertainty Factor Derivation

1. Apply subset of CLA load cases to NL FEM and linear FEMs

- MPCV Base accelerations recovered from SLS/MPCV CLA
- 5 X Liftoff
- 6 X Transonic
- 5 X Max Acceleration

2. Characterize best-fit linear FEM for each loading type

- i.e. don't use LLL FEM for high-level load cases
- 3. Compute Linearization Uncertainty Factors (LUF) using best-fit models

Model Output Post Processing

- Response output locations:
 - 27 nodal locations, 3 DOF each (LAS, CM, SM, SAJ Fairings)
 - 4 elemental strain locations, 1 DOF each (longerons)

Response Comparison Methodology

- Utilized Pearson Correlation Coefficient
 - Provides top-level frequency and phase comparison between two signals
 - Can help indicate which linear FEM best matches the true NL response

Note: Pearson correlation coefficient is a time-integrated (averaged) measure of the linear dependence of two variables and does not compare magnitudes between time histories

$$\rho(A,B) = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{A_i - u_A}{\sigma_A} \right) \left(\frac{B_i - u_B}{\sigma_B} \right)$$

10

Correlation Coefficient Example Application on Pure Sine Signals

Response Comparison Example

- Correlation Coefficient evaluated at all response locations
 - Evaluated separately for each loading type (i.e. Liftoff, Transonic, Max Acceleration)
- Summarized Correlation Coefficients using histogram of all locations and load cases

Acceleration Response Comparison Summary

- Liftoff and Transonic load cases best represented by HLL FEM
- Max Acceleration load cases best represented by LLL FEM

Correlation Coefficient Distribution By Load Type

Strain Response Comparison Summary

- Liftoff and Transonic load cases best represented by HLL FEM
- Max Acceleration load cases best represented by LLL FEM

Correlation Coefficient Distribution By Load Type

Uncertainty Factor Calculation

- Objective: determine uncertainty in HLL and LLL linear model response with respect to NL FEM response (Truth model)
- Uncertainty factor defined as scale factor between linear and nonlinear response magnitudes

Uncertainty Factor

$$LUF_n = \frac{R_{NLin}}{R_{Lin}}$$
 (eq. 1)

LUF>1 \rightarrow Linear Model is Under-Predicting LUF<1 \rightarrow Linear Model is Over-Predicting

	Type of Loading	Magnitude Metric	RSS DOFs
Liftoff	Low Frequency	Peak Value	All
Transonic	Buffet + Thrust Osc.	RMS	YZ Lateral
Max Acceleration	Thrust Osc.	Peak Value	All

Determination of Response

Magnitude (R)

Uncertainty Factor Ensemble

- Uncertainty factors computed at all response locations for all load cases
- LUF probability distributions were generated for each loading type using the best-fit linear model
 - Concerned with statistical significance of max LUF

Max Uncertainty Factor Confidence [1 of 3]

- Statistical significance provides context to max values: ۲
 - How much data lies below this max value? Probability Level (B)
 - How much would this distribution vary if more data was collected? Confidence Level (γ)
- Example shown below for sampled x from a normally distributed population ۲

Max Uncertainty Factor Confidence [2 of 3]

- Since LUFs are not normally distributed, normal tolerance factors cannot be used
- Distribution-free methodology can be used (NASA Handbook 7005 6.1.3)
 - Does not assume normal or any standard distribution type
- Distribution-free tolerance limit (DFL) is defined as:

A value which exceeds all values for <u>at least</u> β fraction of the data with a confidence of $\gamma = 1 - \beta^N$

- Let β_{max} be the fractional portion of data that lies below the DFL (max value)
- Can choose $\beta < \beta_{max}$ to achieve desired confidence
- Primary limitation of DFL method: does not permit independent selection of β and γ
- Example calculation shown on next slide

Max Uncertainty Factor Confidence [3 of 3]

• Example max uncertainty factor (LUF_{max}) determination for transonic load cases shown below:

Step 1: Note that LUF distribution is not normal

Step 2: Calculate fractional portion of data β_{max} that lies below max value UF_{max} $eta = 0.98 < eta_{max}$ $\gamma = 1 - 0.98^{186} = 98\%$

Probability and Confidence Calculation

<u>At least 98% of data lies below</u> 1.01 with a confidence of 98%

Step 3: Choose $\beta < \beta_{max}$ to achieve desired confidence level (98%) from $\gamma = 1 - \beta^N$

Summary

- Max uncertainty factors were computed for each loading type using the appropriate linear model determined by correlation coefficients
- When appropriate correlated linear model is used, uncertainty factors are small (<1.25)
- Note: Inherent uncertainty loads as well as the non-linear "truth" model not assessed in this report

	Liftoff	Tranconic	Max
	LIITOIT	Transonic	Acceleration
Max Uncertainty Factor	1.24	1.01	0.99
Soloctod Lincor Model	High Load	High Load	Low Load
Selected Linear Woder	Level	Level	Level
Probability	98%	98%	98%
Confidence	96%	98%	96%

Questions?

APPENDIX I: PREVIOUS REPORTS

Previous Reports

- The following reports support the material presented in this report:
 - Orion MPCV E-STA Structural Dynamics Correlation for NASA NESC
 - https://www.quartus.com/assets/004/5377.pdf
 - Orion MPCV E-STA Nonlinear Correlation for NESC
 - https://www.quartus.com/assets/004/5404.pdf

APPENDIX II: UNCERTAINTY FACTOR CHALLENGES

Uncertainty Factor Challenges

- Challenging to properly define statistical significance of max uncertainty factor
 - Must use distribution-free techniques
- Multi-modal distributions are an artifact of using peak value as magnitude metric
- Alternative methods could remove modalities

APPENDIX III: PEAK TO RMS RATIO (TRANSONIC LOADING)

Peak To RMS Ratio – Accel. Ensemble (TS)

- Peak-to-RMS ratio checked for all response time histories in all DOFs
 - 25 Hz Fwd Bwd LP Filter applied to only look at correlated, primary structural modes
- No significant change in response distribution in Nonlinear model response

