

End-to-End Assessment of SLS Artemis-1 Development Flight Instrumentation

Andrew Doan¹, Adam Johnson¹, Tony Loogman¹, Paul Bremner², Joel Sills³, Erica Bruno⁴

¹Quartus Engineering Incorporated ²AeroHydroPLUS ³NASA Engineering and Safety Center ⁴Analytical Mechanics Associates, Inc

SLS Artemis-1 Overview

- NASA's Artemis-1 will be the first integrated flight test of NASA's deep space exploration system (SLS)
 - Non-crewed scientific mission
- NASA intends to use Artemis-1 to verify vehicle flight dynamic models, including:
 - Structural modes
 - Buffet/aeroacoustic environments
 - Pogo models
 - Random vibration environments
 - And more

*Image from: https://www.nasa.gov/exploration/systems/sls/multimedia/ block-1-70metric-ton-major-elements-illustration

Operational Flight Measurements

- Flight data measurements offer greatest potential for system model characterization
 - Accurate boundary conditions
 - Real loading
 - Accurate dynamic fuel conditions
 - Measure unpredicted events

Challenges with Flight Measurements

IMAC-XXXVIII Conference & Exposition, February 10-13, 2020

4

Investigation Overview

• Objectives:

- Predict performance of Artemis-1 Development Flight Instrumentation (DFI) for Flight Test Objectives (FTO)
- Pinpoint problem areas and recommend fixes

Multiple FTOs investigated

- Simulated data acquisition process
- Performed mock Flight Data Analysis (FDA)

	Sensors						
FTO	Low Freq	High Freq	Internal	External	External		
	Accels	Accels	Pressure	Pressure	Mics		
Modal Extraction	Х						
Vibration Characterization		Х					
POGO	Х		Х				
Aero/Buffet				Х	X		

DFI Simulation Overview

Nominal Signal Predictions

- Nominal signals = portion of signal we want to measure
- Signal predictions unique based on FTO:
 - Low frequency accelerometers: recovered signals from CLA transient analysis
 - High frequency accelerometers: predicted vibration environments
 - Buffet pressure sensors and aeroacoustic microphones: signals from full scale wind tunnel data
 - Pogo pressure and acceleration: derived from state-space matrices

Operational Noise Estimation

- Aero-acoustics assumed to be largest contributor to unwanted sensor noise
 - NASA had assessed max predicted environments (MPE) based on wind tunnel data and aeroacoustic models
 - MPEs defined as PSDs by zone and/or component throughout SLS
- Mapped MPE levels to each individual sensor to approximate operational noise environments
 - Synthesized transients from operational noise PSDs

Addition of Operational Noise

- MPE operational noise environments added to nominal signal throughout ascent
 - OdB levels applied for liftoff, transonic, and Max Q
 - -12dB knock down applied for quiescent stages of ascent
 - SP-8050 Saturn I and STS flight data used to estimate knock down

Time -								
Thrust								
PTI		PTI 1			PTI 2	PTI 3	PTI 4	PTI 5
Buffet	#		Buitet w/varying Ma	ach O		poster	el & L	
Gust	ff		lso	Xe		B	Pan	
VA Noise	Ċ	-12dB knock down	ច្ច0d <mark>B VA Noise</mark>	Ě	-12dB knock down	ison	uo	
Nominal		Thrust + PTI 1 +	et* Duffet* Duf	ffot* I	Thrust + PTI 2 +	Jett	ettis	
Signal +		1.25×Gust +			1.25×Gust +	Thrust + PTI 3	Thrust + PTI 4	Thrust + PTI 5
Op. Noise		-12dB VA		ub VA	-12dB VA			

DFI Simulation Overview

Consolidated Data Acquisition Settings

- Data acquisition parameters consolidated from NASA branches and contractors for each sensor in DFI system
 - Sensor settings
 - Sensor ranges, resolution, and coupling
 - Data acquisition cards
 - Filter settings, gains, word size, sampling frequency
 - Telemetry system
 - Time synchronization variation between acquisition systems
- Computationally modeled each step in DAQ chain

Critical Parameters to Data Quality

- Multiple parameters deemed critical to signal quality throughout investigation
 - Clipping: sensor range, anti-aliasing filter, and digital range (set by analog gain)
 - Resolution: gain, word size (dynamic range/bit resolution)
 - Phase distortion: pre-sample filter settings
- How do you fix the data acquisition parameters if signal is compromised?
 - Recommended fixes depend on source of corruption and FTO

Effect of Signal Clipping

- Clipping leads to loss in spectral fidelity
- Clipping prediction requires complete understanding of:
 - All operational environments
 - All range and filter settings

SLS Clipping Check

Launch Abort System

Encapsulated Service Module Panels

• Clipping of sensors assessed for each FTO

- Used 3σ of stochastic MPE levels
- Compared peak to each sensor and digital range

At risk sensors require unique solutions

- Multiple options for fixing the problem
- Best solution depends on the intended use of the data
 - Better to sacrifice resolution or bandwidth?
 - Increasing digital range -> decrease in digital resolution

322 Feet

Crew Module

System Performance Improvement

Frequency (Hz)

• Flight measurements on launch vehicles:

- Have many advantages over ground based tests
- Also come with unique challenges
 - Typically only get one opportunity to get the desired data
 - Unavoidable operational noise
 - Less robust storage which limits fidelity of data acquired
- End-to-end assessment is important tool to guide data acquisition design and mitigate data corruption risks
 - Necessary to find solutions that both mitigate data pollution while still accomplishing the test objective
 - If done before design of DAQ system, can save lots of headache down the road

